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ABSTRACT

A numerical analysis methodology and solutions of the interaction between the power stream and
multiply-connected multicavity sealed secondary flow fields are presented. Flow solutions for a multicavity
experimental rig were computed and compared with experimental data of Daniels and Johnson. The flow
solutions illustrate the complex coupling between the main-path and the cavity flows as well as outline the
flow thread that exists throughout the subplatform multiple cavities and seals. The analysis also shows that
the decoupled solutions on single cavities is inadequate. The present results show trends similar to the T-700
engine data that suggests the changes in the CDP seal altered the flow fields throughout the engine and affected
the engine performance.

INTRODUCTION

As power systems mature the ability to refine component efficiencies declines. Current efforts in the gas
turbine industry are centered on the interactive flow systems such as the interaction between the power stream
and the secondary flow paths existing beneath the blade platforms, beyond the blade/vane tips and around the
diffuser and combustor sections (refs. 1, 2, 5 to 7). In most cases the secondary flows provide the necessary
component cooling, for example, compressor gas flowing about the combustor liner and through the turbine
stators.

In the conventional turbomachine design, component analyses are often carried out independently with
the power stream flow data taken as a passive boundary condition. And for large changes in component
efficiencies this approach has been more than adequate. However, as gains in component efficiencies
diminish, the interaction becomes acute. Recent experimental evidence illustrates this point. Changing the
compressor discharge seal (CDP) from a 6 forward facing tooth labyrinth to a two stage brush seal provided
at least a 1 percent decrease in specific fuel consumption (SFC). But more importantly, the compressor
discharge pressure increased signaling a complete change in the compressor, combustor, and turbine pressure
maps; in short changing the CDP seal changed interaction between the secondary and power streams (ref. 9).

Agreement between experimental evidence and numerical results for single cavities can provide good first
order estimates of mass, heat, and momentum distributions (refs. 3 and 7). For multiple cavity experiments
such as UTRC simulation of the space shuttle main engine high pressure fuel turbopump (SSME/HPFTP)
(ref. 4) the interactive effects of the power stream and secondary flow streams are simulated. Intercavity
feedback affect pressure balancing and stator/blade stage pressures throughout the entire turbomachine.



The current state-of-the-art Computational Fluid Dynamics (CFD) methodologies and tools are mature
to a point where the analysis of multiple cavities with multiple interconnections and interaction with the main-
path flows can be conducted. Herein, a numerical simulation of the UTRC HPFTP experimental scaled model
rig provides mass distribution comparisons with experiment and flow streamlines to augment understanding
of these measurements. These simulations prove the capabilities of the CFD tools to analyze the complex flow
fields in complex flow geometries to provide accurate results. Such simulations provide details of the flow
fields in engines and rigs that can be valuable in optimization of engine seals and cavity design as well as aid
in design of experimental rigs for optimum instrumentation. While much work remains, the computed
distribution of ingested mass and purge/coolant mass streams illustrates the importance of secondary/power
stream interactions.

GEOMETRIC AND TEST PARAMETERS

The experimental apparatus simulating the SSME HPFTP is described by reference 4; however some
critical details such as interstage seal and subplatform flow areas required information from the monitors (e.g.
Elizabeth Messer, NASA MSFC Alabama) or the manufacturer (Rockwell/Rocketdyne Division). Figure 1(a)
illustrates the UTRC simulation of the turbomachine, figure 1(b) the model seal and gas source and meas-
urement locations for the UTRC simulation, and figure 1(c) the numerical block gridding as scaled and scanned
directly from the drawings shown in the UTRC simulation (ref. 4).

Two-dimensional, axisymmetric analysis was assumed although the cost of a three-dimensional analysis
may be justified for new designs and for the more exact computations, CAD drawings or equivalent would
be required. The experimental rig contained several details, which make the flow 3-dimensional, and
approximations were made to facilitate the axisymmetric analysis. The bolt heads on the rotor disks were
neglected. The stationary support for the central seal contained slots in the cicumferential direction. These
were simulated as an open passage at the mean radius (domain connecting regions Il and ITI). The radial width
of this slot was fixed to yield the correct opening area in the actual rig. The interstage labyrinth seal was
modeled exactly with the correct tooth shape and seal clearance. The experimental rig also contained curved
passages under the blade platform to simulate a portion of the blades. These passages were represented using
rotating openings under the blade platforms in the 2-D flow field. The rotation of these passages offers some
resistance to the through flow and this effect in the 2-D flow was simulated by adding a flow resistance.
Momentum sinks proportional to the local dynamic head were added to the x and r momentum equations of
all cells in regions V and VI. Thus, e.g. a sink term of type 1/2kupu2 was added to the x momentum equation
and 1/2kvpv2 was added to the r momentum equation where u and v are cartesian velocities in the axial and
radial directions and p is the fluid density. The values of k, and k., were unknown,and a range of values from
0 to 100 were tried to see their effect on the flow field. The effects tended to be fairly small due to the small
velocities through these passages. A value of 30 was used in the computations.

Test runs 102, 202, and 205 UTRC report (ref. 4) were selected to illustrate the effects of changing the
forward cavity purge flows and tangential Reynolds number with air as the coolant, see table 1.

FLOW GEOMETRY, CONDITIONS, AND SOLVER DESCRIPTION

The complex shapes of the cavities and passages precludes the use of a single block grid topology for
computational simulations. In the present calculations, the overall flow domain was divided into 52 blocks
(subdomains) to optimize the grid distribution, both in terms of the cell numbers and flow resolution. The flow
domain included the four main powerstream or gas paths, four cavities, a labyrinth seal, open areas under the
blade platforms, and the open area in the stator connection regions II and III (fig. 1(b) and (c)). The blocks
(subdomains) were created to follow the complex shape of the cavities, and are shown in figure 1(d). A total



of 18 450 cells were used to discretize the flow domain. The computationally intensive nature of the runs
precluded a detailed grid refinement analysis to ensure grid independence of the solutions. However, the grid
was refined in the fish mouth seal areas and under the blade platform area to generate another grid with
approximately 29 000 cells. Solutions on this grid were obtained for run #202. One of the important sets of
parameters is the rates of flow ingress/egress at the rim seals (seals no. 1 to 4) and these values for the coarse
and fine grid were calculated and compared. These results are presented in table II along with the results for
other runs. It was observed that the flow rates through seals 2 and 4 remained nearly constant as the grid was
changed, but the flow rates in seal numbers 1 and 3 changed through a larger extent (8 to 10 percent). In both
cases, the flow rates through seals 1 and 3 reduced in absolute value. This will certainly have some effect on
the concentration of the mass fraction F5 and in regions to the left of seal 3, but for the present purpose, the
accuracy of the coarser grid was felt to be acceptable.

The flow simulations also included the energy equation, which needed boundary specification on all
walls. In the absence of specific temperature and/or heat flux information, the walls were assumed to be
adiabatic. Since the experiments were run at room temperatures with nearly the same temperatures for all flow
streams, the net temperature changes in the flow field were small (~40 °K) and were produced mainly as a
result of windage. Under these conditions, the adiabatic wall assumption was justified. However, inan actual
engine, the temperatures of the various main and passage flows are widely different, and assumption of
adiabatic walls will incur a higher error in solutions in these cases. In the absence of wall information, the solid
disks and supports should be included in the energy equation computations and the conditions at the wall
should be computed as a part of the solution. The present CFD code is capable of handling this situation; such
an analysis, however, will need additional grid blocks in all the pertinent solid regions to obtain a coupled
fluid-solid energy equation solution and will not be completed herein.

The boundary conditions on main gas paths were: measured, constant velocity values at the inlets, and
measured static pressures at the exit boundaries. The purge velocities were calculated using the non-
dimensional flow parameters and the measured density values (ref. 4). The velocity values were then used as
inlet conditions at the respective purge flow locations. All rotor surfaces, including those in the open area
under the blade platforms (connecting regions I and to IV) were specified as rotating walls. Flow solutions
were obtained using a multiblock version of SCISEAL (ref. 2), a pressure-based, finite volume, 3-D CFD code
developed for flow and force calculations in turbomachinery seals. To simulate the tracer gas flows, different
compositions of gases were specified at different inlet locations. The individual compositions were set very
close to that of the air with minor changes in the CO, concentrations. The movement of these mixtures in the
flow was tracked by solving mixture fraction equations for each of the individual compositions. The turbulent
flow was solved using the standard k- turbulence model with wall functions. Second-order central-
differencing was used for the convective fluxes with a damping of 20 percent, i.e. the convective fluxes were
a combination of 20 percent upwind and 80 percent central differencing. As remarked upon earlier, a flow
resistance was added to the momentum equations in regions V and VI to simulate blade shank resistance.

NUMERICAL RESULTS

One of the important parameters in these experiments was the flow movement across the four fish-mouth
rim seals separating the powerstream or main-gas-path and the cavities. Experimental observations show that
in all three runs, seals No. 1 and 2 which are on either side of the rotor I, always ingest flow from the main
gas path. This mass and the purge flow mass then exits through seals 3 and 4, on rotor II. Ingestion through
rim seals 1 and 2 was designed intentionally, so that the temperatures in the blade shanks in rotor 1 are higher
which reduces the thermal gradients in the blade platform and shank regions. The computed mass flow rates
at all “inlets” on the overall flow domain are compared with the experimental values in Table 2. The net mass
in (through seals 1 and 2, and all purge flows) and the net mass out (seals 3 and 4) are also shown. As seen
from the table, very good agreement is seen in the mass ingestion rates on seals 1 and 2. The measured values



of the flow egress in seals 3 and 4 are lower than the calculated values. An overall mass balance for
experimental values indicates that the mass egress is substantially lower than mass input, and hence the actual
mass flow values in seals 3 and 4 should be higher than those measured, for mass conservation.

Toillustrate the flow structure and the flow thread within the cavities, the streamlines are plotted in figures
2(a) and (b) for baseline run No. 202. Seal 1 ingests main path flow and this flow is forced on along the top
wall of the blade shank region (region V), due to the rotor disk rotation, and due to the purge flow in region
I that gets pumped up along the rotor surface. The combined flow of ingested gas and purge flow then passes
through the blade shank regions into region II, where the ingested flow in seal 2 mixes with it. The entrained
powerstream flow near seal 2 goes through a complicated path to get into region II. A vortex at the fish-mouth
rim seal ingests flow (fig. 2(c)) on its downstream side, which then goes through seal 2. This is entrained by
another vortex on the other side of seal 2 and then eventually mixes with the flow from the blade shank passage.

This mixture then passes along the top wall of region II, forced towards this wall by a recirculation bubble
generated by pumped flow along the rotor wall inregion II. This flow then passes through the slots in the stator
wall in region III, and up along through seal 3, and the other half through the blade shank region in rotor 2,
and eventually out through seal No. 4. This overall pattern is dictated by the “flow pumping” induced at rotor
walls, and the pressure differentials at the four main-path regions. Variations in the purge flow rates (runs 202
and 205) and variation in the tangential Reynolds number (runs 102 and 205) essentially show the same main
features of the flow field (table I). The variation in the flow rates and rotating speed serves to change the
strength of the vortical patterns and the streamlines.

On a region-by-region basis, we see that in region I and IV, most of the flow domains are filled with the
purge flow mixtures Fl and F3, and these will provide efficient disk cooling. Near seal 1, and region V, the
purge flow Fl mixes with ingested flow F4. Flows in region V and VI are dominated by a recirculation bubble
generated by the wall rotation. In a 3-D flow one can expect that the flowstructure will be different in these
regions due to presence of blade shank walls.

Mixing of Fl, F4 and F5 near the joining of regions II and V follows a tortuous route. The large
recirculation bubble inregion V interacts with a smaller bubble at this junction before the flow exits into region
II, where this stream further mixes with purge flow F2. The flow pattern indicates that the cool purge flow
rides along the rotor wall and mixes with the big stream at the top of region II. The presence of large amounts
of F2 on the rotor wall also indicates efficient cooling.

The mixture of F2, F4, F5 and Fl passes then to region III, where it mixes with a small amount of F2,
coming through the labyrinth seal. In region III, the main flow thread hits the rotor wall much earlier than in
regions I and II. The cooling of this wall can be expected to be poorer than rotor I walls. On the other side of
the rotor, region IV, there is very little ingress of the mixture coming through region VI and the rotor wall
cooling is more effective. This uneven cooling of rotor II could lead to thermal stresses in the disk and disk
warpage, that is, the aft tip of rotor I and the forward tip of rotor II are distressed.

The distribution of the ingested and purged flows can also be shown using the concentrations of the various
gas compositions (F1 through F7) injected in the main and purge paths. Experimental data and computed
results indicate that most of Region I is occupied by purge flow Fl, and region IV is occupied by purge F3.
Most of the mixing and ingestion takes place in regions II, Il and areas near the rim seals. Figure 3(a) to (f)
show contours of concentration values for various compositions used in the main path and purge flows: (1)
purge flow Flin region I (fig. 3(a)); (2) purge flow F2 injected in the center of the rig (fig. 3(b)); (3) main path
flow F4 at seal 1 (figs. 3(c) and (d)); and (4) main path flow F5 at seal 2 (fig. 3(¢) and (f)). The computations
as well as experiments show no evidence of concentrations of F6 (seal 3) and F7 (seal 4) which indicate no
ingestion through these seals. The contours of F2 (fig. 3(b)) indicate the pumping action of rotor I and II that
splits F2 flow to the right in cavity II and to left in cavity III through the labyrinth seal. The placement and
values of these contours are consistent with the flow structure seen in figures 2(a) and (b). The purge flow Fl
and the ingested flow F4 (figs. 3(a), (c), and (d)) also mix in regions II and III as seen from contours for Fl
and F4 (figs. 2(c) and (d)). The blade shank region in rotor 2 then passes some of this mixture in region IV
and out through seal 4. The contours for these concentrations for runs 205 and 102 (not shown herein) also
show similar structures, consistent with the flow behavior in these runs.



The calculated values of the concentrations of the various gas compositions were obtained at several probe
locations, and compared with the experimental values. Some representative concentration values of the
various compositions in regions I to V are shown in table I1I, along with the experimentally measured values.
The locations of the probes are shown in table ITI. The computed values in and around region I and ITl show
good correlation with experiments. However, the match deteriorates in and around the blade shank regions,
and some of the fish mouth rim seals. The 2-D treatment of the blade shanks is partly responsible for the
discrepancy. The discrepancy at fish mouth rim seals could be in part due to the inaccuracies in the shapes of
the seal outlines, introduced during scanning of the drawings in the UTRC report (ref. 4) which were used to
generate grids. The computational effort to simulate the blade shank passages in 3-D would require upwards
of 0.3M to 0.5M points and several weeks to computational time to complete; for this analysis such an effort
was not required.

In general the streamlines show a secondary flow thread beneath the blade platform that essentially starts
at the forward cavity, ingested fluid from seals 1 and 2, continues through the interstage area mixing with the
purge flow to exhaust through seals 3 and 4, with flow additions from the aft cavity purge F3.

For the simulated geometric configuration, figure 1, the major purge and coolant loop tends to favor the
second stage turbine while encouraging fluid ingestion and mixing between the blade platforms and roots of
the first stage turbine.

As a numerical exercise, it was found that nearly ten-fold increases in the purge flows Fl and F2 were
required to inhibit the ingestion through seals 1 and 2 for the main gas path conditions and cavity 4 purge flow
of run 202.

SUMMARY OF RESULTS

1. Multiple cavity analyses capture interactive power/secondary flow stream effects that can not be
realized for uncoupled single cavity treatments. These flow streams define the subplatform flow thread.

2. Good agreement between analysis and data was seen in the mass ingestion rates on seals 1 and 2, with
flow egress in seals 3 and 4 lower than the calculated values.

3. Both analysis and data illustrate ingestion at the first stage turbine leading and trailing edge rim seals
with fluid mixtures of ingested gases and purge gases exiting at both the leading and trailing edge seals of the
second stage turbine.

4. Comparisons of calculated results and data on concentrations of various flow compositions in the
central cavity between the first and second stage rotors is good but deteriorates at the blade shank regions, and
some of the fish mouth rim seals. The 2-D treatment and drawing scans may be partly responsible for the
discrepancies.

5.For the given turbomachine geometry, the coolant and purge gas secondary flow thread tends to provide
cooling for the front side of rotor 1 and the aft side of rotor 2. However, the ingested gas affects the aft part
of rotor 1 and the front part of rotor 2 producing nonuniform thermal gradients in the disc. Rotor 1 would appear
more thermally stressed than rotor 2 but both are nonuniformly stressed.

6. Multiple cavities affect the flows throughout the engine; small changes in purge flows due to seal
changes alters the engine flow fields. Experimental results of T-700 testing illustrate this effect.
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TABLE L—TEST PARAMETERS AND NOTATION

Test rpm | Pressure | Reynolds | Forward | Center Aft
number psia number cavity cavity cavity

purge | purge | purge
Fl=¢;; | F2=¢)3 | F3=0y

102 1004 | 60.55 1.64x108 0.027 0.012 0.012
202 1502 | 57.24 | 2.19x10° 0.017 0.008 0.013
205 1504 | 5779 | 2.24x108 0.030 0.015 0.014

Powerstream flow concentrations Herein UTRC Seal
Nomenclature number
First stage blade leading edge  F4 = ¢y, 1
trailing edge  F5=¢p; 2
Second stage blade leading edge  F6 = 45 3
trailing edge F7 =d¢; 4

TABLE IL—EXPERIMENTAL AND CALCULATED MASS FLOW RATES AND MASS BALANCES

[Mass flow rates in lbs/s.]
Run number Rim seal flows Specified puge flows
Seal 1 Seal2 | Seal3 | Seal4 | Forward | Center Aft Net, Net,
cavity cavity cavity inm out m

102
numerical -0.150 |[-0.072 0233 | 0260 0.1425 0.0637 | 0.064 0.4923 0.4928
experimental -0.126 |-0.0%94 0265 | 0208 | 0.143 0.062 | 0.066 0.491 0.473
(exp-num)/exp | 0.19 -0.23 0.12 | -0.25 0 -0.03 0.03 0.003 -0.04
202
numerical -0.236 |-0.139 0.286 | 0353 ] 0.1168 0.0552 { 0.0904 | 0.6374 0.639
(18 K grid)
numerical -0.237 |-0.126 0283 | 033 0.1168 0.0552 | 0.0904 | 0.6374 0.639
(30K grid)
experimental -0.224 |[-0.154 0.257 | 0271 0.115 0.057 | 0.087 0.637 0.528
(exp-num)/exp | 0.05 -0.10 -0.11 0.30 0.02 0.03 0.04 1] -0.21
205
numerical -0.223 |-0.1025 | 0.357 | 0.381 0.208 0.103 | 0.0985 |0.7351 0.738
experimental -0.186 | -0.113 0302 | 0302 0.208 0.105 | 0.095 0.707 0.604
(exp-num)/exp | 0.20 0.09 0.18 0.26 0 0.01 0.04 0.04 0.2

Netmy, = (seal 1) + (seal 2) + (all purge flows)
Net m,, = (seal 3) +(seal 4)
Awm = (m,, * M)

A * m > 0 implies net mass accumulation in apparatus
Aem
Run number 102 202 205

experimental  +0.018 +0.109  +0.103
numerical -0.005 -0.0006 -0.0029



TABLE I.—COMPARISON OF GAS SOURCE MEASURE-
MENTS AND CALCULATIONS FOR FLOW CONDITIONS
BASELINE RUN 202 (SEE TABLE I). SEE FIGURE 4 FOR

PROBE LOCATIONS
$12 413 9s [%1 |
Fl F2 F3 F4 FS

Region I - Forward cavity

experimental 09 0 93 (0

0
A24 -numerical | 0978 | 1x10#* |0 0021 | 2x104
experimental .96 0 0 0 10

Region II - Center cavity and rotor I

C44 - numerical | 0.232 | 0.03 0 0465 | 0.273

experimental 24 12 .03 32 28
CA42 - numerical | 0.150 [0378 (0 0299 | 0.173
experimental 22 .18 .03 31 2
A8 -numerical | 0.194 {0.194 |0 0388 | 0.223
experimentat .09 .67 0 13 1t
AS -numerical | 0.003 | 0987 [0 0.006 | 0.004
experimental .03 9 0 05 04
C39 - numerical {0.002 {0992 |0 0004 | 0.002
experimental .07 7 .03 1 04

Region III - Center cavity and rotor I

B30 - numerical | 0.039 | 0.838 0 0078 | 0.045

experimental 06 .77 .03 08 10
B26 - numerical | 0070 {0708 |0 0.140 { 0.082
experimental 22 22 .03 .29 22
B23 - numerical {0216 [0.102 |0 0431 | 0.251
experimental .24 12 .03 .33 26
C25 - numerical | 0.218 ] 0.091 0 0436 | 0.254
experimental 24 11 .02 33 25

C33 - numerical | 0.097 (0598 |0 0.193 | 0.112
experimental 2 .19 .03 31 23

C29 - numerical | 0.223 | 0.068 0 0447 | 0.261
experimental .23 .11 .02 33 25

Region IV - Aft cavity and rotor I

C11 - numerical | 0.006 |0.012 | 0956 | 0011 {0.007

experimental .08 .03 77 .07 07
B10 - numerical | 0.213 | 0.109 | 0.004 | 0425 | 0.248
experimental 21 A2 .06 34 3
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Figure 1.—{g) Large-scale model of SSME HPFTP disks and cavities - from Daniels and Johnson (1993). (b) Model seal
region and gas source/exit locations - from Daniels and Johnson (1993). (c) Flow domain showing the computational
grid and the definition of various flow streams and rim seal locations.



Main path Main path Main path Main path

<— R

4

@

Figure 1.—Concluded. (c) Flow domain showing the computational grid and the definition of various flow streams
and rim seal locations. (d) Muttiple cavity/seal subdomains; 52 blocks are used to describe the complex shape.
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Figure 2.—(a) Streamline pattem in regions |, Il and the connecting blade shank region. (b) Streamline
pattem in regions Hi, IV, connecting blade shank region and the slot in the stator support. (c) Flow
detail at seals 1, 2, and blade shank region to illustrate the complex vortical structure and Mainpath
flow ingestion.
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Figure 2.—Concluded. (c) Flow detail at seal 1, 2, and blade shank region to illustrate the complex vortical
structure and main-path flow ingestion.
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Figure 3.—(a) Mass fraction contours of purge flow F1 in regions 1, If, and lll, and blade shanks (contour legends are the same for
Figures 3a - 3f). (b) Mass fraction contours of purge flows F2 in the central regions Il and lli, the labyrinth seal and blade shank.
{c) Mass fraction contours of ingested powerstream flow F4 in regions | and Il and connecting blade shanks. (d) Mass fraction
contours of ingested powerstream flow F4 in regions 1l1, IV and connecting blade shanks. (e) Mass fraction contours of
ingested powerstream flow F5 in regions | and il and connecting blade shanks. (f) Mass fraction contours powerstream fiow F5
in regions I, IV and connecting blade shanks.
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Figure 3.—Continued. (¢) Mass fraction contours of ingested powerstream flow
F4 in regions | and [l and connecting blade shanks. (d) Mass fraction contours
of ingested powerstream flow F4 in regions Il], IV and connecting blade shanks.
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Figure 3.—Concluded. (e) Mass fraction contours of ingested powerstream flow F5 in regions |
and 1l and connecting blade shanks. (f) Mass fraction contours of ingested powerstream flow

F5 in regions llI, IV and connecting blade shanks.
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Figure 4.—Locations of the probes for gas source measurements
in Table 3. From Daniels and Johnson (1993). (a) Region | and
rotor 1. (b) Region 1l and rotor 1. (c) Region lll and rotor 2. (d)
Region IV and rotor 2.
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Figure 4.—Concluded. (c) Region Iii
and rotor 2. (d) Region IV and
rotor 2.
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